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Abstract: A genetic algorithm (GA) was used to fit a deterministic phytoplankton-zooplankton-nutrient
(PZN) model to a time series of remote-sensed chlorophyll. A self-organizing map (SOM) was used to
visualise the fitness landscape of the parameter space searched by the GA. These techniques complement
each other, as the GA operates by breeding more offspring in regions of high fitness, and the SOM recognises
these clusters in high-dimensional space and maps them to low-dimension space for easy visualisation. The
fitness landscape of this optimisation was found to be extremely rugged and precipitous, with several areas of
high fitness that contained multiple optima. A three-stage optimisation process located an optimum, but

doubt remains that it is a global optimum.
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1 INTRODUCTION

Satellite ocean colour imagery is currently the
only source of long-term time series of
chlorophyll in many areas of the world. Fitting
deterministic population models to this data has
several advantages over empirical models that do
not consider the underlying ecological processes.
Deterministic models can estimate ecosystem
parameters, and may provide parsimonious
descriptions of data [Solow, 1995].

Genetic  algorithms (GAs) are nonlinear
optimisation techniques based on the principles
of Darwinian natural selection [Holland, 1975;
Mitchell, 1997], and have been used successfully
to solve difficult optimisation problems. GAs
evolve a population of binary 'chromosomes',
comprised of the concatenated parameter values.
GAs evaluate the 'fitness' of each point according
to a defined fitness function, which then
reproduce in proportion to their fitness, with
mutation and exchange of genetic material
producing a fitter population. GAs do not require
any derivative information of the problem being
optimised, but converge to an optimum by
sampling more intensely near regions of high
fitness. Clusters of samplings in the parameter
space should therefore indicate regions of high
fitness.

A self-organizing map (SOM) is an unsupervised
neural net that positions prototype vectors on a
regular low-dimensional grid in an ordered
fashion, making it a powerful visualization tool
[Kohonen, 1997]. SOMs look for similarities
between vectors, and can be efficient methods
for identifying clusters of similar data. They are
therefore a useful adjunct to GAs that generate
clusters of data in regions of high fitness, and
sparse data in regions of low fitness.

We use a GA to fit a deterministic PZN
(P=phytoplankton, Z=zooplankton, N=nutrient)
model to a time series of remote-sensed
chlorophyll values in the Southem Ocean. A
SOM is used to assess the ‘topography' of the
fitness landscape' to give some indication of the
likelihood that we have found a global optimum.

2. METHODS
The PZN- model includes five biological rate

parameters, an available nutrient concentration,
and two parameters describing a physical forcing

on the phytoplankton growth rate.
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It is clear from equations (1-3) that the model is
closed with respect to mass (No = P+Z+N). The
physical forcing (f) represents a  gross
approximation of the effect of seasonal changes
in sea surface temperature, irradiance and mixed
layer depth on phytoplankton growth rates.
Mixed layer depth is primarily a function of
temperature profiles in the upper ocean and wind
stress on the ocean surface.

The model's parameter space is centred on
parameter values reported for marine plankton
systems, with ranges defined as + 50% of the
reported values (Table 1). The parameter values
have been converted to a fixed 20 m deep mixed
layer, approximating depths viewed by remote
optical sensors [Robinson, 1995]. The model
behaviour within this parameter space has been
investigated by Cropp and Gabric [2001].

Table 1. Parameter values for the PZN model.

Par. Description Min Max

Kk Z grazing rate' 0.003  0.009
k; | Zhigher predation® | 0.025 0.075
ks | Zassimilationeff.® | 0.200 0.600
ks P growth rate? 0.450 1.350
ks | P half-sat constant’ | 137 414
ks | No (total nutrient)* | 500 3,000
k; | Minimum forcing® | 0.200 0.700
kg Day of forcing max 0 365

U'm’mgat NTday™; ? day”; ° dimensionless

‘mgatNm?

The steady state phytoplankton population size is
given by: '

k
=—"2 )]
qu kl (1 - ks)

The resilience of the model steady state, defined
as the negative of the real part of the dominant
eigenvalue of the linearised system [DeAngelis,
1980] is given by:

Res = k_“[ k5 - ]P (6)
2 “
eq 5 4

The study region was the area of the Southem
Ocean at 45-50°S, 123-145°E. A large sampling
arca was selected to minimise the influence of
water from different masses on the time series.
Our study region usually contains water from the
Subtropical Convergence Zone and the Antarctic
Polar Front, which mix in the region [Griffiths et
al, 1999]. The maximum sea surface
temperature in the study region occurs around
January 17 (simulation day 116). Monthly mean
wind speeds vary between 11 ms™ in January to
7 ms” in June. Mixed layer depths vary from
approximately 100 m in summer to about 500 m
in winter. The euphotic zone depth is fairly
constant throughout the year at about 90 m, and
dissolved nitrate have been measured in the
range 30-160 mg at N m" [Gabric et al., 1995].

A time series of chlorophyll concentrations was
derived from three years of SeaWiFS 'weekly' (8
day) Standard Mapped Images. These images
each have 14,000 pixels in the study region. The
value for each point in the time series is the
average of the cloud-free pixels in the study
region for that 'week'. Cloud is a major problem
for satellite measurement of ocean colour in the
Southern Ocean; the number of cloud-free pixels
in the study region ranged from 12 % in winter to
69 % in summer. The time series was
commenced at the austral vernal equinox
(September 23), just prior to the phytoplankton
spring bloom.

Least squares estimators (7) are commonly used
as maximum likelihood estimators when fitting
deterministic models to time series data [Fasham
and Evans, 1995; Solow, 1995].

LSE. =ZN:[y i, k) a)

Press et al. [1997] suggest minimising a 3
statistic (8) if the standard deviations of the data
points are not constant.
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This statistic allows an estimate of the statistical
significance of the fit. Press et al. [1997] note
however that large standard deviations o;
associated with the data points y; can cause a
poor fit to be statistically significant.

The satellite data set has large variance
(coefficients of variation of 16-88%) due to the
effects of cloud and the large area study region,
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suggesting that a 4’ statistic alone may be
misleading. Consequently, a least squares and a
;f estimator were implemented, and compared,
as measures of fit T

The initial optimisations using the GA searched
the parameter space investigated by Cropp and
Gabric [2001]. Each point in parameter space
visited by the GA was used to integrate the PZN
model for two years. The fitness was calculated
from the goodness of fit of the second year of the
integration to the data. This reduced the
influence of transient dynamics on the fitting
procedure. The unforced steady state values of P,
Z and N for each parameter set were used as
initial conditions for the model integrations.

The GA was configured with a population of 30
individuals, each represented as one 80-bit
chromosome composed of the eight parameters.
The population was evolved for 50 generations,
using initial and final mutation and crossover
probabilities of 0.010-0.005 and 0.750-0.975
respectively. The probabilities were varied
during the simulation according to a power law.
The reproductive success of individuals was
implemented using sigma-scaled Monte Carlo
selection to prevent premature convergence of
the GA [Mitchell, 1997]. Sigma scaling controls
the relative reproductive success of individuals
within the population. It maintained the
probability of reproductive success of an
individual with a fitness two standard deviations
below the mean at 3 times that of an individual
two standard deviations above the mean.

The optimisation process was implemented in
three stages. Initially the GA was configured to
undertake an extensive search of the parameter
space, so that an appreciation of the sensitivity of
the estimators to the various parameters could be
obtained. Each estimator was implemented 10
times by the GA. The coefficients of variation of
the mean parameter values of the optimum
parameter set found in each implementation were
used as indicators of the sensitivity of the
estimators to each of the parameters.

The second stage involved holding the sensitive
parameters constant at the values obtained in the
first stage, and searching for optima controlled
by the other parameters. These optima were
resolved in the third- stage, in which further-
restricted, adaptive parameter spaces were
defined and evolved by the GA. This approach
allowed us explore the parameter space and infer
the topography of the fitness landscape while
fitting the PZN model to the data.

3. RESULTS

The initial simulations indicated that both
estimators were similarly sensitive to the
parameters, and estimated similar values for the
most influential parameters (k;, k5, ks, k, and ks -
Table 2). 4 values less than 16 are significant at
p=0.001.

Table 2. Average values and coefficients of
variation (%) of average optimum fit of ten

optimisations.
Par. LSE. 7
value C.V. value C.V.
k; 0.0035 13.1 | 0.0036 13.1

k, 0.0656 12.0 | 0.0641 10.9
ks 0.5263 9.8 0.5309 10.5
ky 0.8876 332 | 09095 232

ks 285 283 301 19.3
ks 886 31.8 1575 49.1
ks 03187 14.7 | 04089 253
ke 229 3.7 216 9.1

Py 39.48 0.96 37.74 12
Fitness 1180 14.1 3.78 21.7

It is obvious from Table 2 that the optimisation
procedure is really fitting the model equilibrium
phytoplankton value to the average data
phytoplankton value (39.37). The variation in k;,
k, and k; is a result of there being many
combinations of these parameters in the vicinity
of the optimum values that result in P, ~ 39.37.

The resilience of the model steady state is a
property that might also be expected to influence
the fitting process. Models with low resilience
parameter sets will exhibit larger 'predator-prey’
cycles, for longer duration, in the model
integrations. These may influence the fitness

_estimation, as only one year of integration is

allocated for these oscillations to decay. Analysis
of the GA output revealed a negative correlation
(r = -0.489, p < 0.001) between the L.SEE.
estimator and the maximum resilience (i.e.
regions of good fit (high fitness) were usually
associated with high resiliences). This correlation
was not however evident within the regions of
high fitness.

The second stage of the optimisation process was
implemented on a reduced parameter space of
only five dimensions, with k;, and k; at their
minimum and maximum values respectively, and
k2, selected so that P,, = 39.37 (Table 3).

These data indicate that ks is highly influential
once k;, k, and k; are 'optimised’. GA runs to
find the optimum parameter sets were then
implemented on a four dimensional parameter
space, after fixing kg =225 and holding k;, k., and
k; as before. Figure 1 shows that over the
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majority of the parameter space the L.S.E. and z°
estimators are highly correlated.

Table 3. Average values and coefficients of
variation (%) of average optimum fit of ten
optimisations with k;, k;, and k; fixed.

L.S.E. and relatively high 7, were obtained from
inspection of the GA data (Table 4).

Table 4. Parameter values of peaks [A] and [B]
(k], kg, k3 and kg were ﬁxed).

Par. A B
k 0.0030 0.0030
k, 0.0472 0.0472
ks 0.6000 0.6000
ky 0.5520 0.703
ks 156 177
ks 595 693
ks 0.342 0.342
kg 225 225
LS.E. 890 899
;/ 2.54 2.86

A SOM of this data (Figure 3) clearly reveals
clustering of sampling points. The clustering of
vectors in the distance matrix (top left figure,
dark regions indicate a high density of points),
correspond with the Fitness mapping (bottom
right, dark indicates highest fitness). All maps
have the same axes, so points in the same place
in each of the maps represent the same data
vectors, The other four maps are of the
parameters ky, ks, ks and k; (left to right, top to

Par. L.SE. P
value C.V. value C.V.
k, 0.0030 - 0.0030 -
k; 0.0472 - 0.0472 -
ks 0.6000 - 0.6000 -
k4 1.0097 29.6 | 1.0073 28.6
ks 252 345 286 284
ks 896 18.5 1261 48.2
ky 0.3680 20.5 | 0.4296 18.6
kg 229 1.7 224 2.3
Fitness 973 15.0 3.03 16.7
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Figure 1. Correlation between sum squares and
chi squared of all points visited in the reduced
parameter space (r =0.985, p <<0.001, n=
6000).

The region of high fitness (low L.S.E. and low
%)) in Figure 1 is expanded in Figure 2. This
strongly suggests that there are at least two near-
equal LS.E. fitness peaks in the reduced
parameter space that can be distinguished by
their / estimators. Figure 2 also implies that in
this region of high fitness, the estimators are not
necessarily positively correlated.
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Figure 3. SOM of best 3,000 data from Fig 2.
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Figure 2. Correlation between sum squares and
chi squared of points with L.S.E. < 1,000 in the
reduced parameter space (r = 0.553, p << 0.001,

The parameter sets of the peaks, [A] evidenced
by low L.SE. and low 4/, and [B] with low

n=4438).

The SOM clearly shows three fitness peaks
(clusters of dark pixels in the top left, centre and
bottom right of the upper left map), for which
fitness values of 890, 900 and 930 respectively
can be inferred from the fitness (bottom right)
map. This SOM is of the highest fitness region of
parameter space only. The SOM indicates that
there may be several small distinct regions of
high fitness in the reduced parameter space, as
indicated by the individual dark pixels in the
distance matrix plot. The 'fitness landscape' of
this optimisation problem appears to be highly
undulating, suggesting it will be difficult to find
a global optimum.

The final stage of the optimisation procedure was
implemented by using the GA to search reduced,
adaptive parameter spaces, of the original eight
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dimensions, around each of the peaks A and B.
The new parameter spaces were defined as + 5%
of the parameter value of each peak. The
parameter space was updated- after each iteration
to + 5% of the new parameter values for each
new optimum found by the GA, until the GA had
converged. This approach allowed the GA to
traverse a 'ridge' in the area of high fitness
around each peak until it arrived at the optimum
for that region, even if it lay outside the initial
parameter space.

The convergence characteristics of the GA in this
final optimisation (Figure 4) suggest that there
are in fact two distinct optima in this small
region of parameter space. In both cases, the GA
converges linearly toward the optimum, always
maintaining a distinction between the two peaks.
The adaptive parameter spaces used would have
allowed the two peaks to converge to the same
optimum.

"

o 2 4 [ 1 10 [F] ] 18 il L0
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Figure 4. Convergence of GA in final
optimisation parameter spaces (Peak A is
represented by solid circles; Peak B by open
circles).

The parameter values of the optima in Figure 5
are listed in Table 5:

Table 5. Parameter values of optima converged

to from peaks [A] and [B].

PAR A B
k 0.00303 | 0.00279
k, 0.03285 | 0.03426
ks 0.72456 | 0.68926
k4 0.71363 | 0.87319
ks 153 157
ks 660 769
ks 0.41730 | 0.40427
ks 228 230

L.S.E. 703 741
7 228 2.74

The parameter sets of the two optima differ
primarily in the values of k&, (maximum
phytoplankton growth rate) and ks (total
nutrient). Although they have different parameter
sets, and different fitness, there is little difference
in fit between the actual curves (Figure 5). The
different parameter values that generate the

curves do however have ecological significance,
indicating that similar chlorophyll signals may be
generated by different species of phytoplankton.

0 25 50 75 100 125 150 17 200 225 250 27 300 32 350 7S
DAY

Figure 5. Best least squares fits (Peak A is solid

line; Peak B is dotted line). Error bars are + %4
standard deviation.

A final parameter space was defined by the
values of the optima in A and B (i.e. the area of
parameter space between A and B was searched).
Searches for minimum L.S.E. and 3* estimators
revealed multiple optima between A and B, and a
SOM (Figure 6) confirmed that the fitness
landscape is highly undulating. The highest
fitness regions (dark areas of the rightmost two
maps, bottom row) clearly contain multiple
clusters of points (top left map).

SOM B2

Figure 6. SOM of final parameter space (as for
Figure 3, except that all parameters are shown,
and both L.S.E. and 4/ estimators are included as
fitness measures).

A search for poor fits in this space revealed
L.S.E. values up to 2,300, revealing that there are
deep, precipitous 'valleys' of low fitness between
the peaks.

4. CONCLUSIONS

This optimisation process has included extensive
simulation to determine the topography of the
fitness landscape associated with the fitting of
the PZN model to remote sensed satellite data.
The SOM has demonstrated its useful for
visualising the topography of the fitness
landscape. This problem has been demonstrated
to have an extremely rugged fitness landscape,
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including some precipitous ravines, as nearby
peaks of fitness can have deep valleys between
them. ‘

Although the optimum PZN model fits the data
quite well (with a highly significant 3, but recall
Press et al's [1997] warning) it fails to capture
the amplitude of the summer phytoplankton
bloom. The seasonal forcing derived for the
model also lags the irradiance and temperature
forcings by 138 and 112 days respectively. The
model seasonal forcing includes these factors
plus the effects of mixed layer depth, which
correlates positively with temperature and
negatively with wind stress. As the maximum
wind stress in the study region occurs at about
the same time as the temperature maximum, the
cycle of mixed layer depths is not obvious,
although it is generally shallow in summer and
deep in winter in the sub-Antarctic ocean [Gabric
et al, 1995].

The nature of the fitness landscape precludes us
from any confidence that the optimum we have
found is a global one. The rugged topography of
the fitness landscape reduces the effectiveness of
the GA, as the resolution of the parameters in the
GA coding must be very precise, and the
searching procedure exhaustive to detect the
narrow peaks.

Our optimisations suggest that the most effective
approach to fitting a deterministic PZN model to
our data may lie in modifying the fitness
landscape to reduce its ruggedness. The
implementation of known variations in mixed
layer depth would allow us to exclude physical
forcings from the optimisation problem
altogether. The question of whether a more
complex biological model, with commensurately
more parameters to be optimised, would provide
a less rugged fitness landscape is moot.

We have attempted to fit the model to the data
using dynamics of the model near its steady
state. An alternative would be to attempt to fit a
transient dynamic of the model to the data. This
would require the model initial conditions to be
included as parameters. The fitness landscapes of
the steady state and transient models are likely to
be substantially different, with there being no
reason to suspect that the transient landscape
would be less rugged. :
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